6-6節 Exercises 4-6
問4
4. In the simple quark model of baryons and mesons the quarks span the threedimensional irreducible representation while the corresponding antiquarks span the three-dimensional irreducible representation . The group is sometimes referred to as the flavour group .
(a) Show that combining quarks with antiquarks leads to an octet and singlet of mesons.
(b) Show that combining a triple product of quarks leads to a baryon singlet and two baryon octets.
REP> gr su3 Group is SU(3) REP> prod 1, 1^2 {21} + {0} REP> dim 21 dimension = 8 REP> dim 0 dimension = 1 REP> prod prod 1,1,1 {3} + 2{21} + {0} REP> std last {3} + 2{21} + {0} REP> dim 3 dimension = 10 REP>
(b) で {3} も出てきてよく分からない。
問5
5. A student tries to unite the lowest lying baryons into a single irreducible representation of a Lie group G. Noting that the baryon octet has spin and the decuplet spin identify G and the relevant irreducible representation she found.
- よく分からんが・・・
spin SU(2) * quark SU(3) なので Lie 群的に SU(6)→SU(2)*SU(3) か?
spin3/2, decuplet → 4*10=40 次元, spin1/2, octet → 2*8=16 次元となる。
問4で SU(3) の {3} は10重項、{21} は八重項と分かっているので、求める規約表現は {3}{3} + {1}{21} となるはず。
以下の計算で、SU(2) であることを考えると、SU(6) の規約表現 {3} が SU(2)xSU(3) では {3}{3}+{21}{21} = {3}{3}+{1}{21} と見なせるので、これが求める答えだと思ふ。
BRM> stop enter branching & rule numbers> 5 2,3 U(6) to U(2) * U(3) BRM> 0 {0}{0} BRM> dim 0 Irrep modifies to null BRM> 0 {0}{0} BRM> 1 {1}{1} BRM> 2 {2}{2} + {1^2}{1^2} BRM> 3 {3}{3} + {21}{21} BRM> 1^2 {2}{1^2} + {1^2}{2} BRM> 1^3 {3}{1^3} + {21}{21} BRM> quit
問6
6. Assume that you have the group , as in exercise 5. Your quarks are now also endowed with spin and color . The total of 18 single quark states span the vector irreducible representation of and you have the chain of groups
Assume that each quark is in an state and that the states of the six quark configuration
, span the totally antisymmetric irreducible representation of . In terms of QCD (Quantum ChromoDynamics) physical states correspond to color singlets i.e. states transforming as under . With respect to the color-spin group this can only happen if the weight of the partition labelling the irreducible representation of is divisible by three. That is for irreducible representations of null triality.(a) Determine the irreducible representations of contained in of that have null triality.
(b) Determine the spin content of each found in (a).
(c) Which of the multi-quark configurations and might you expect to contain color singlet states?
(d) In the MIT bag model of multi-quark states there is an energy term proportional to the
eigenvalues of the second-order Casimir operator of the color-spin group. Show that
the eigenvalues for the irreducible representations and are in the ratio 1:2:3.
- 謎が多いが・・・
(a)
U(18) ⊃ U(3) * U(6) で、U(6) の λi がみな3の倍数になっていて null triality の条件をみたしているのは、{2^3}{3^2} の項だけ。
DP> brm Branch Mode enter branching & rule numbers> 5 3,6 U(18) to U(3) * U(6) BRM> 1^6 {6}{1^6} + {51}{21^4} + {42}{2^2 1^2} + {41^2}{31^3} + {3^2}{2^3} + {321}{321} + {2^3}{3^2}
(b)
SU(6) ⊃ SU(2) * SU(3) で、U(2) のスピン成分は であるから、{6}={6}, {51}={4}, {42}={2}, {3^2}={0} となる。
BRM> stop enter branching & rule numbers> 5 2, 3 U(6) to U(2) * U(3) BRM> 3^2 {6}{3^2} + {51}{42} + {51}{321} + {42}{51} + {42}{41^2} + {42}{3^2} + {42}{321} + {3^2}{6} + {3^2}{42} + {3^2}{2^3}
SU(3) の方は {321}={21}, {41^2}={3}, {2^3}={0} となるので、{3^2}{2^3}={0}{0} が color singlet と思われる。(が、よく分からんw 3の倍数でアホになります)
(c)
素朴に3の倍数である q^9 と思われる。以下の計算で 確かに {1^9} から {3^3}{3^3} にブランチングする。
BRM> stop enter branching & rule numbers> 5 3 6 U(18) to U(3) * U(6) BRM> 1^7 {61}{21^5} + {52}{2^2 1^3} + {51^2}{31^4} + {43}{2^3 1} + {421}{321^2} + {3^2 1}{32^2} + {32^2}{3^2 1} BRM> 1^8 {62}{2^2 1^4} + {61^2}{31^5} + {53}{2^3 1^2} + {521}{321^3} + {4^2}{2^4} + {431}{32^2 1} + {42^2}{3^2 1^2} + {3^2 2}{3^2 2} BRM> 1^9 {63}{2^3 1^3} + {621}{321^4} + {54}{2^4 1} + {531}{32^2 1^2} + {52^2}{3^2 1^3} + {4^2 1}{32^3} + {432}{3^2 21} + {3^3}{3^3} BRM> exit
(d)
SU(6)群で規約表現 {21^4}, {2^3}, {3^2} の性質を書かせて、2次のカシミール演算子のところを見ると、72:144:216=1:2:3 になっている。
DP> gr su6 Group is SU(6) DP> rep REP mode Group is SU(6) REP> prop 21^4 <dynkin label> (10001) dimension = 35 72*2nd-casimir=72 2nd-dynkin = 12 REP> prop 2^3 <dynkin label> (00200) dimension = 175 72*2nd-casimir=144 2nd-dynkin = 120 REP> prop 3^2 <dynkin label> (03000) dimension = 490 72*2nd-casimir=216 2nd-dynkin = 504 REP>