6-6節 Exercises 1-3
問1
1. The states of the electron configuration may be classified by the following chain of groups
leading, finally, to the spectroscopic terms Use SCHUR to establish the results of Table
5.1 for the spectroscopic terms of the configuration
- d 電子の分類
SU10 での {1^5} 表現は、d電子の10個の軌道に5個の電子が反対称に詰まっているということ。Sp10 での分裂は seniority 数に対応 (または j-j coupling での軌道の詰め方)、SU2 はスピン角運動量。
ブランチングを求める
SU10→Sp10
Sp10→SU2×SO5
SO5→SO3
DP> ? tab TABleOfBranchingRules Format:- Modes:- DP Description:- Table A.2 : Table of branching rules NOTES: Rule No. Group Subgroup Rule and number(s) in BRM 1 :- U(n) -> O(n) 1,n 2 :- U(n) -> Sp(n) 2,n 3 :- U(n) -> U(n-1) 3,n 4 :- U(m+n) -> U(m) x U(n) 4,m,n 5 :- U(mn) -> U(m) x U(n) 5,m,n 6 :- U(2k) -> U(k) 6,2k 7 :- U(n) -> SO(3) 7,n 8 :- SU(m+n) -> U(1) x SU(m) x SU(n) 8,m,n 9 :- Sp(2k) -> SO(3) 9,2k 10:- Sp(2k) -> U(1) x SU(k) 10,2k 11:- Sp(2k) -> SU(2) x SO(k) 11,2k 12:- Sp(2k) -> U(2k) 12,2k 13:- Sp(2k) -> U(k) 13,2k 14:- Sp(2m+2n) -> Sp(2m) x Sp(2n) 14,2m,2n 15:- Sp(2mn) -> Sp(2m) x O(n) 15,2m,n 16:- S(m+n) -> S(m) x S(n) 16,m,n 17:- S(n) -> A(n) 17,n 18:- O(n) -> S(n) 18,n 19:- O(n) -> S(n+1) 19,n 20:- O(n) -> U(n) 20,n 21:- O(2k) or O(2k+1)-> U(k) 21,2k (or 2k+1) 22:- O(m+n) -> O(m) x O(n) 22,m,n 23:- O(mn) -> O(m) x O(n) 23,m,n 24:- O(4mn) -> Sp(2m) x Sp(2n) 24,2m,2n 25:- SO(2k+1) -> SO(3) 25,2k+1 DP> brm Branch Mode enter branching & rule numbers> 2 10 U(10) to Sp(10) BRM> 1^5 <1^5> + <1^3> + <1> BRM> stop enter branching & rule numbers> 11 10 Sp(10) to SU(2) * SO(5) BRM> 1^5 {5}[0] + {3}[2] + {1}[2^2] BRM> 1^3 {3}[1^2] + {1}[21] BRM> 1 {1}[1] BRM> stop enter branching & rule numbers> 25 5 O(5) to SO(3) BRM> 0 [0] BRM> 2 [4] + [2] BRM> 2^2 [6] + [4] + [3] + [2] + [0] BRM> 1^2 [3] + [1] BRM> 21 [5] + [4] + [3] + [2] + [1] BRM> 1 [2] BRM> exit
SU2表現からスピン角運動量へ
SU2xSO3 →SO3xSO3 の自己同型
DPrep Mode (with function) DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [5*0] Groups are SO(3) * SO(3) [s;2][0] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [3*4] Groups are SO(3) * SO(3) [s;1][4] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [3*2] Groups are SO(3) * SO(3) [s;1][2] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*6] Groups are SO(3) * SO(3) [s;0][6] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*4] Groups are SO(3) * SO(3) [s;0][4] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*3] Groups are SO(3) * SO(3) [s;0][3] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*2] Groups are SO(3) * SO(3) [s;0][2] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*0] Groups are SO(3) * SO(3) [s;0][0] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [3*3] Groups are SO(3) * SO(3) [s;1][3] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [3*1] Groups are SO(3) * SO(3) [s;1][1] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*5] Groups are SO(3) * SO(3) [s;0][5] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*4] Groups are SO(3) * SO(3) [s;0][4] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*3] Groups are SO(3) * SO(3) [s;0][3] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*2] Groups are SO(3) * SO(3) [s;0][2] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*1] Groups are SO(3) * SO(3) [s;0][1] DP> gr 2 su2,so3 Groups are SU(2) * SO(3) DP> au gr1so3, [1*2] Groups are SO(3) * SO(3) [s;0][2]
規約表現の次元を求めて検算
SU10->Sp10
252=132+110+10
Sp10->SU2xSO5
132=6*1+4*14+2*35
110=4*10+2*35
10 = 2*5
SO5->SO3
1=1
14=9+5
35=13+9+7+5+1
10=7+3
35=11+9+7+5+3
5=5
DP> gr sp10 Group is Sp(10) DP> dim 1^5 missing brackets or group not set? Dimension = 0 DP> rep REP mode Group is Sp(10) REP> dim 1^5 dimension = 132 REP> gr u10 Group is U(10) REP> dim 1^5 dimension = 252 REP> gr sp10 Group is Sp(10) REP> dim 1^5 dimension = 132 REP> dim 1^3 dimension = 110 REP> dim 1^1 dimension = 10 REP> dim 1^5+1^3+1 dimension = 252 REP> gr su2 Group is SU(2) REP> dim 5 dimension = 6 REP> dim3 dimension = 4 REP> dim 1 dimension = 2 REP> gr so5 Group is SO(5) REP> dim 0 dimension = 1 REP> dim 2 dimension = 14 REP> dim 2^2 dimension = 35 REP> dim 1^2 dimension = 10 REP> dim 21 dimension = 35 REP> dim 1 dimension = 5 REP> gr so3 Group is SO(3) REP> dim0 dimension = 1 REP> dim 4 dimension = 9 REP> dim 2 dimension = 5 REP> dim 6 dimension = 13 REP> dim 4 dimension = 9 REP> dim 3 dimension = 7 REP> dim 2 dimension = 5 REP> dim 0 dimension = 1 REP> dim 3 dimension = 7 REP> dim 1 dimension = 3 REP> dim 5 dimension = 11 REP> dim 4 dimension = 9 REP> dim 3 dimension = 7 REP> dim 2 dimension = 5 REP> dim 1 dimension = 3 REP> dim 2 dimension = 5 REP> gr so3 Group is SO(3) REP> dim s2 dimension = 6 REP> dim s1 dimension = 4 REP> dim s0 dimension = 2 REP>
問2
2. If two sets of states of a configuration transform under as the irreducible representations and respectively their matrix elements of an operator transforming as will certainly vanish unless
The Coulomb interaction within the configuration can be expanded in terms of operators symmetrised with respect to the same groups used to classify the states. One of the relevant operators transforms as under . Let be the number of times occurs in the Kronecker product . Use SCHUR to construct the entries given in Table 5.2 for the numbers .
Table 5.2 とは、Table 6.3 のことか?
- rep mode で積を取る
積に関しては可換なので半分だけ計算すればよい。
rep mode での外積は prod
DPrep Mode (with function) DP> rep REP mode REP> gr so5 Group is SO(5) REP> compare 22 prod 0,0 zero REP> compare 22 prod 0,1 zero REP> compare 22 prod 0,1^2 zero REP> compare 22 prod 0,2 zero REP> compare 22 prod 0,21 zero REP> compare 22 prod 0,2^2 [2^2] REP> compare 22 prod 1,1 zero REP> compare 22 prod 1,1^2 zero REP> compare 22 prod 1,2 zero REP> compare 22 prod 1,21 [2^2] REP> compare 22 prod 1,2^2 [2^2] REP> compare 22 prod 1^2,1^2 [2^2] REP> compare 22 prod 1^2,2 zero REP> compare 22 prod 1^2,21 [2^2] REP> compare 22 prod 1^2,2^2 [2^2] REP> compare 22 prod 2,2 [2^2] REP> compare 22 prod 2,21 [2^2] REP> compare 22 prod 2,2^2 [2^2] REP> compare 22 prod 21,21 2[2^2] REP> compare 22 prod 21,2^2 [2^2] REP> compare 22 prod 2^2,2^2 [2^2] REP>
問3
3. Show that for the irreducible representation occurs once in the symmetric part of the Kronecker square of the irreducible representation and once in the antisymmetric part.
- 問題がわけわかめ。
d 電子に関わる問題が続いているとして、[2^2] が d^5 のが問1で求めた {1}[2^2] ~[s;0][2^2] のことであるとする。この二乗をとってスピンで分類する。
DP> gr 2 so3,so5 Groups are SO(3) * SO(5) DP> prod [s0*2^2], [s0,2^2] mistake. missing brackets or group not set? zero DP> prod [s0*2^2], [s0*2^2] [1][4^2] + [1][43] + [1][42] + [1][41] + [1][4] + [1][3^2] + [1][32] + [1][31] + [1][3] + [1][2^2] + [1][21] + [1][2] + [1][1^2] + [1][1] + [1][0] + [0][4^2] + [0][43] + [0][42] + [0][41] + [0][4] + [0][3^2] + [0][32] + [0][31] + [0][3] + [0][2^2] + [0][21] + [0][2] + [0][1^2] + [0][1] + [0][0] DP>
[1][2^2] spin triplet
[0][2^2] spin singlet が各1個づつ。これでいいのか?