Schur 付属のマニュアルの問題を解きます
6-3節
問1
1. The branching rule for the maximal embedding of
in
is given as
. Inversely, for
we have
.
(a) Use SCHUR to show that for
and
(b) Use the knowledge gained in (a.) to write a single sequence of commands to evaluate
theKronecker product
. Check that your result is dimensionally
correct and compare your result with that obtained by simply setting the group as
and using the command “prod21,21”.
- Schur function mode で {21/A}, {21/B} の確認
REP> sfn Schur Function Mode SFN> sk 21, a {21} - {1} SFN> sk 21, b {21} + {1} SFN>
- Representation mode と Branching Rule mode で解けという事でしょうか?
6-3節はまだ BRMode の説明をしていなので、違うかもしれませんw
まず branching のテーブルを表示させて欲しい branching の番号を知ります。
DP> ?tab TABleOfBranchingRules Format:- Modes:- DP Description:- Table A.2 : Table of branching rules NOTES: Rule No. Group Subgroup Rule and number(s) in BRM 1 :- U(n) -> O(n) 1,n 2 :- U(n) -> Sp(n) 2,n 3 :- U(n) -> U(n-1) 3,n 4 :- U(m+n) -> U(m) x U(n) 4,m,n 5 :- U(mn) -> U(m) x U(n) 5,m,n 6 :- U(2k) -> U(k) 6,2k 7 :- U(n) -> SO(3) 7,n 8 :- SU(m+n) -> U(1) x SU(m) x SU(n) 8,m,n 9 :- Sp(2k) -> SO(3) 9,2k 10:- Sp(2k) -> U(1) x SU(k) 10,2k 11:- Sp(2k) -> SU(2) x SO(k) 11,2k 12:- Sp(2k) -> U(2k) 12,2k 13:- Sp(2k) -> U(k) 13,2k DP> brm Branch Mode enter branching & rule numbers> 12 8 Sp(8) to SU(8) BRM> 21 {21} - {1} BRM> stop enter branching & rule numbers> 2 8 U(8) to Sp(8) BRM> 21 <21> + <1> BRM> exit DPrep Mode (with function) DP> rep REP mode REP> gr sp8 Group is Sp(8) REP> prop 21 <dynkin label> (1100) dimension = 160 20*2nd-casimir=27 2nd-dynkin = 60 REP> prod 21, 21 <42> + <41^2> + <4> + <3^2> + 2<321> + <31^3> + 3<31> + <2^3> + <2^2 1^2> + 2<2^2> + 3<21^2> + 2<2> + <1^4> + 2<1^2> + <0> REP> dim last dimension = 25600 REP> conv_s_to_rep sk o, sk 21,a, sk 21,a, b <42> + <41^2> + <4> + <3^2> + 2<321> + <31^3> + 3<31> + <2^3> + <2^2 1^2> + 2<2^2> + 3<21^2> + 2<2> + <1^4> + 2<1^2> + <0>
確認:160x160 = 25600
問2
2. Read the information in Appendix A about the command au and use the command to show
that under theautomorphism
. Use that observation to obtain
the content of the Kronecker productsand
from the result
obtained from the command “prod1,1”.
- SO8 の 三回対称なルート図に対応した自己同型
prod 1,1 → prod s0-,s0- → prod s0+,s0+ → prod 1,1
REP> rep REP> gr so8 Group is SO(8) REP> au so8, 1 Group is SO(8) [s;0]- REP> au so8, last Group is SO(8) [s;0]+ REP> au so8, last Group is SO(8) [1] REP> prod 1,1 [2] + [1^2] + [0] REP> prod s0+,s0+ [1^4]+ + [1^2] + [0] REP> prod s0-,s0- [1^4]- + [1^2] + [0] REP> au so8, prod 1, 1 Group is SO(8) [1^4]- + [1^2] + [0] REP> au so8, last Group is SO(8) [1^4]+ + [1^2] + [0] REP> au so8, last Group is SO(8) [2] + [1^2] + [0] REP>
B.R.Judd が Nieson & Koster の cfp の表に関して、SO(7) の対称性では説明のつかない 0 要素が多くあるから隠れた対称性がまだあるはず、と言っていた正体が、この SO(8) ⊃ SO(7),SO(7)',SO(7)'' の対称性に基づくものだったようです。ここで三つの SO(7) は線形従属で独立なのは2つだそうです。
問3
3. Set the group as
and use SCHUR to calculate the Kronecker product
.
Now save the result by using the command “setr1 last” . Use the command ”zero” to eliminate
“last” and then issue the command “rv1” and you should once again see the output of the
Kronecker product. Now save the “rvar” to a diskfile using the command “save rvar ’filename’
” as described in Appendix A. If you now issue the command “setr1 zero” you will find on
saying “rvar 1” the data for the Kronecker product has been lost and “rvar 1” simply reports
zero. All is not lost as we can reload, even days later, the saved “rvar1” using the command
load as described in Appendix A. Thus issuing the command “load rvar’filename’ ” followed
by the command “rv1” will put to screen once again the Kronecker product. Note however,
we must set the group as appropriate to that of the saved rvar.
- file への保存・読み出し
マニュアルには、"setr1 xxx" と書いてありますが、"setrv1 xxx" と「v」を付け加えないとうまくゆかないです。
注:setrv 1 xxx はいいですが set rv1 xxx は許されません。
REP> gr sp8 Group is Sp(8) REP> prod 321,421 <742> + <741^2> + <74> + <73^2> + 2<7321> + 3<731> + <72^3> + 2<72^2> + 3<721^2> + 2<72> + 2<71^2> + <7> + <652> + <651^2> + <65> + 2<643> + 4<6421> + 6<641> + 3<63^2 1> + 3<632^2> + 9<632> + 9<631^2> + 6<63> + 8<62^2 1> + 12<621> + 5<61^3> + 5<61> + <5^2 3> + 2<5^2 21> + 3<5^2 1> + <54^2> + 4<5431> + 3<542^2> + 10<542> + 9<541^2> + 6<54> + 3<53^2 2> + 7<53^2> + 18<5321> + 21<531> + 6<52^3> + 15<52^2> + 18<521^2> + 12<52> + 12<51^2> + 3<5> + <4^3 1> + 2<4^2 32> + 5<4^2 3> + 10<4^2 21> + 11<4^2 1> + <43^3> + 9<43^2 1> + 9<432^2> + 21<432> + 20<431^2> + 12<43> + 19<42^2 1> + 26<421> + 11<41^3> + 10<41> + 3<3^3 2> + 5<3^3> + 14<3^2 21> + 15<3^2 1> + 6<32^3> + 14<32^2> + 17<321^2> + 11<32> + 12<31^2> + 3<3> + 6<2^3 1> + 9<2^2 1> + 5<21^3> + 5<21> + 2<1^3> + <1> REP> setrv1 last REP> zero zero REP> last zero REP> rv1 <742> + <741^2> + <74> + <73^2> + 2<7321> + 3<731> + <72^3> + 2<72^2> + 3<721^2> + 2<72> + 2<71^2> + <7> + <652> + <651^2> + <65> + 2<643> + 4<6421> + 6<641> + 3<63^2 1> + 3<632^2> + 9<632> + 9<631^2> + 6<63> + 8<62^2 1> + 12<621> + 5<61^3> + 5<61> + <5^2 3> + 2<5^2 21> + 3<5^2 1> + <54^2> + 4<5431> + 3<542^2> + 10<542> + 9<541^2> + 6<54> + 3<53^2 2> + 7<53^2> + 18<5321> + 21<531> + 6<52^3> + 15<52^2> + 18<521^2> + 12<52> + 12<51^2> + 3<5> + <4^3 1> + 2<4^2 32> + 5<4^2 3> + 10<4^2 21> + 11<4^2 1> + <43^3> + 9<43^2 1> + 9<432^2> + 21<432> + 20<431^2> + 12<43> + 19<42^2 1> + 26<421> + 11<41^3> + 10<41> + 3<3^3 2> + 5<3^3> + 14<3^2 21> + 15<3^2 1> + 6<32^3> + 14<32^2> + 17<321^2> + 11<32> + 12<31^2> + 3<3> + 6<2^3 1> + 9<2^2 1> + 5<21^3> + 5<21> + 2<1^3> + <1> REP> save rvar '6-3-3.rvar' save[1] REP> setrv1 zero REP> rvar 1 zero REP> rv1 zero REP> load rvar '6-3-3.rvar' load[1] REP> rvar 1 <742> + <741^2> + <74> + <73^2> + 2<7321> + 3<731> + <72^3> + 2<72^2> + 3<721^2> + 2<72> + 2<71^2> + <7> + <652> + <651^2> + <65> + 2<643> + 4<6421> + 6<641> + 3<63^2 1> + 3<632^2> + 9<632> + 9<631^2> + 6<63> + 8<62^2 1> + 12<621> + 5<61^3> + 5<61> + <5^2 3> + 2<5^2 21> + 3<5^2 1> + <54^2> + 4<5431> + 3<542^2> + 10<542> + 9<541^2> + 6<54> + 3<53^2 2> + 7<53^2> + 18<5321> + 21<531> + 6<52^3> + 15<52^2> + 18<521^2> + 12<52> + 12<51^2> + 3<5> + <4^3 1> + 2<4^2 32> + 5<4^2 3> + 10<4^2 21> + 11<4^2 1> + <43^3> + 9<43^2 1> + 9<432^2> + 21<432> + 20<431^2> + 12<43> + 19<42^2 1> + 26<421> + 11<41^3> + 10<41> + 3<3^3 2> + 5<3^3> + 14<3^2 21> + 15<3^2 1> + 6<32^3> + 14<32^2> + 17<321^2> + 11<32> + 12<31^2> + 3<3> + 6<2^3 1> + 9<2^2 1> + 5<21^3> + 5<21> + 2<1^3> + <1> REP>